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,Complex Dynamics of the Integer Quantum Hall Effect

S. A. IIYugman” and V. Nikos Nicopouloa”~b

0 Theoretical Division MS-B262, Los Alamos National Labomtory,

Los Alamou, NM 87545

b Department of Physics, University of Florida,

Gainewille, FL 92611

We investigate both claasical and quantum potential scattering in two dimen-

siom in a magnetic field, with applications to the integer quantum Hall effect.

Claasical scattering is complex, due in one case to the approach of scattering

states to an infinite number of bound states. We show that bound states are

generic, and occur for all but extremely smooth scattering potmtiala (l@Vl + O).

Quantum scattering follows the classical behavior rather clomly, exhibiting chup

resonances rather than classical bouod states. Extended scatterers provide an

explanation for the breakdown of the QHE at ● compuatively small Hall voltage.

1. INTRODUCTION

The quantum Hall effect has been reviewed by Prange and Girvin.l It occurs when

electrons are confined to two dimensions and placed in a etrong magnetic field. The

Harniltonian is

+ ~ Ula(lFj -FAI) + [-eJ?”~+’j]t (1)
j<h j

where the magnetic field 8 = @ x ~ = B$ and +’j = (z, y), The fht term ia the

electron kinetic energy in the preeence of a magnetic field, The second is a random

potential, due perhaps to impurities. The third term is the interaction between

elcctrone, The final term ia added to indicate that we seek the linear and nonlinear
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;espome to a Hall electric field l?.

The fractional quantum Hall effect (FQHE) has plateaus of the Hall conductivity

a.v = (p/q) e2/h, where p and g are integers. It is a many-body problem in which the

first and third terms in Eq. (1) are most important.

in this paper.

The integer quantum Hall effect haa plateaus of

The FQHE will not be discussed

the Hall conductivity at integer

multiples of e3/h. Most of the essential physics of the IQHE is captured by the one-

body problem with the Vlz term omitted. That is the approach taken here. Note that

the random potential VR cannot be omitted, even in the first approximation. Without

VR, the problem is simple to solve exactly, and the plateaus in the Hall conductivity

disappear.

For the IQHE, perhaps the motit basic question one could ask is: “HOWdoes potential

scattering happen in a magnetic jield ?“ As we discuss below, potential scattering in

a magnetic field is quite complicated, and not completely understood. This question

is often bypasmed in the theory of the IQHE. Laughlin, for example, haa given an

elegant gauge invariance argument for the quant ization of the Hall conductivity y,2

This argument cannot, however, explain what happens to aq or a?- off of a plateau

or at nonzero temperature or frequency. It also cannot explain nonlinear response,

including the breakdown of the QHE, or noise or fluctuation effects. To deal with

these questions, one must answer the basic question about scattering in a magnetic

field, We first consider classical potential scattering in a magnetic field, and then

quantur scattering.

II. CLASSICAL POTENTIAL SCATTERING

In zero magnetic field, scattering from ● convex object is trivial. Trajectories either

collide once with the object, or miss entirely (me Fig. 1).
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In a nonzero magnetic field perpendicular to the plane, a Hall electric field must

also be present. Otherwise, aparticle far from the potential will circle in a closed

cyclotron orbit, and never encounter the potential. The Hall electric field is taken to

be in the ~ direction in this artic!e

Scattering in a magnetic field appears to divide into two ceses, (1) scattering from

a smooth, slowly varying potential, and (2) scattering from a more rapidly varying

potential. In the first c=e, scattering is tame. The guiding center of the incident

particle’s cyclotron orbit nearly follows an equipotential surface. The particle detours

around the scatterer, and emerges with almost the same y guiding center coordinate

that it entered with (see Fig, 2). The only important eihct of the scatterer is that

the outgoing particle reaches a given s coordinate at an earlier time than it would

have for V = O. Thic problem h~ been discussed by several authorc.~- ‘e

Scattering from an abrupt barrier is more complicated. In contrast to scattering

from a very smooth potential, the trajectory may encircle the scatterer many times

before it escapee. The outgoing y guiding center coordinate can also be quite difFerent

from the incoming coordinate (see Fig, 3 ). At discussed in mection III, the scattering

dynamica of abrupt potentials are genetic and apply to potentiak with finite gradients

as well.

A special case that can be solved completely is ~cattering from s thin horkntal

wall.’” A portion of a scattering trajectory is shown in Fig. ( 4 ), For this cue, the

y guiding center coordinate is a constant of the motion, m that the moat interestir 14

variable is tha number of collisions. For a general hard scatterer, one can turn t‘Is

continuous scattering trajectory into a ditcrete hamiltonian romp, by recording r uly

the points of collicion with the scatterer. In general, this is ● two-dimensional r.mp,

because both the collision point and contact angle are required to calculate the next

collision point (and contact angle). For the thin horizontal wall, however, since the
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y guiding center coordinate is a constant of the motion, the hamiltonian map is one-

dimensional,

The perimeter of the horizontal wall is parametrized by JEIO, 1]. There are two

dimensionless parameters, the diameter of the cyclotron orbit a, and the amount by

which the orbit translates in one period, which is proportional to the Hall field ~,

equal to 2@. Both a and /3 are measured in units of the perimeter of the wall. There

is also an initial condition, the angle 6c[0, 27r) at which the particle begins with its

guiding center a specified distance from the barrier.

The one-dimensional Hamiltonian map can be used to calculate the number of

collisions N, rn~:imized over the initial condition 8, for a given set of parameters. A

fairly typical section through parameter space is shown in Fig. (5). For the largest r

plotted (largest electric fields), the particle can collide no more than 5 times with the

barrier. As the held is reduced, it becomes possible to collide 9 times, then 13. As r

is reduced further, N diverges. (All of the spikes in Fig. (5) diverge to infinity, and

appear finite only because of fixed numerical resolution. ) N comes down, diverges

again, and in fact diverges an infinite number of times before reaching an accumulation

point ar r = 3.5. A simple analytic formula describes the location of the divergences.

Other sets of divergences are found at still lower r.

A- r approaches a typical point of divergence, the particle trajectory approaches

a periodic trajectory, such as the one shown in Fig. (6), A scattering state coming

from -m cannot become caught in a periodic trajectory. It can, however, become

caught in a trajectory that is arbitrarily close to a periodic trajectory. In that case,

the trajectory corresponds to slightly mistuned parameters, so that the trajectory

comes close to the periodic trajectory, but does not quite close.

If one plots the aet of points in parmeter opace at which infinite trajectories exist,

Fig, (7) results. The periodic orbits occur on rays coming from the origin. As will

4



be discussed below, there are also lines of qvasiperiodic infinite orbits, such as the

one extending upward and to the right from (r,s) = (0.25, O). The lines of periodic

orbits are impaled on the lines of quasiperiodic orbits, The length of the periodic line

segments is a discontinuous function of the distance along the quasiperiodic line.

One can construct an exact renormalization group (RG) description of the orbits.

The RG is implemented by constructing first return maps of ever smaller intervals of

the perimeter of the wall. The intervals must be chosen with care so that the ma? does

not become more complicated at each stage. The existence of quasiperiodic infinite

orbits is known because one of the fixed points describes quasiperiodic trajectories.

Details of the RG are described in Ref. (7).

III. GENERAL POTENTIALS

The thin horizontal wall shows unusual scattering behavior in a magnetic field,

including the existence of infinite orbits. It is important to know whether infinite

orbits occur for general potentials in a magnetic field, or whether they are specific

to the thin horizontal wall, It will be shown that infinite orbits occur in general, for

both abrupt and smooth potentials,

The abrupt potential considered in this section is a general simple closed curve A,

outside of which the potential V(r~ vanishes, arid inside of which the potential is

infinite (or equivalently, larger than the maximum kinetic energy of the scattering

particle). ‘l’he curve A should be differentiable (have a unique tangent vector) al-

most everywhere, A particle whose trajectory intersects A reflects specularly at the

boundary, with the angle of incidence equal to the angle of reflection.

Consider an arbitrary initial position and momentum (F, fl, as shown in Fig. (8).

Somewhere along the trajectory, place a short reflecting line segment at an arbitrary

angle. The particle collides, and another line segment is placed across a later part
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of the trajectory. This process is continued, and in most cases the trajectory will

eventually intersect itself. The final line segment is placed through this intersection

at an angle so that the angle of incidence equals the angle of reflection. The final

line segment is shaded with stripes. The full curve A can be any curve that passes

through the points at which the collisions occur with a tangent vector parallel to the

line segments.

Many potentials that have an infinite periodic trajectory for a given initial position

and moment urn have thus been const rutted. The set of potentials is of co-dimension 2,

since what is required is that the one-dimensional manifold A intersects a particular

point with a particular slope (at the striped line segment). As before, by slightly

mistuning the parameters (initial position, momentum, electric field, or magnetic

field), a scattering state results that collides with the potential an arbitrarily large

number of times before escaping to infinity.

We have also demonstrated a solution to a different problem: given a potential, to

find an initial (F, IY)that results in a periodic trajectory, This problem was solved

analytically for rectangles .* One can also make the following observation for general

abrupt potentials. Assume the magnetic field, the Hall field, and the potential are

given. The initial conditions for a trajectory are the initial point along the perimeter,

and the initial momentum vector given by Ifl and fJP. If the trajectory is to be periodic

after one orbit, it must return the the initial point with the correct contact angle.

since energy is conserved, Ifl will be correct if the contact point is correct. There are

3 initial conditions and two equations to be satisfied. Usually (but not always) there

will be a one-dimensional manifold of solutions,

The thin hoiizodd wall is known to have two chums of infinite trajectories, periodic

and quasiperiodic, It is not known whether infinits trajectories that are not periodic

exist for general potentials,
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We now consider smooth potentials V(+’) that do not have abrupt walls, but rather

may have a well-defined finite gradient everywhere. The following discussion does not

apply to the special case in which V is infinitely slowly varying ( l@V[ is infinitesimal

everywhere), which results in trajectories that follow equipotential lines to arbitrarily

good approximation.

Scattering from a smooth potential that haa a finite gradient everywhere is com-

pared with scattering from an abrupt potential in Fig. (9). It is clea- t:.at there are

no important qualitative differences between the two cases. For smooth potentials,

the trajectory does not advance as far to the right. Comparable behavior then oc-

curs in a shorter distance. The construction illustrated in Fig. (8) can be repeated

with the reflecting line segments replaced by regions where V rises at a finite rate.

It is simplest if the striped line segment at the self-intersection remains an abrupt

reflecting wall. This wall can, however, be rep! aced by a region where V rises at a

finite rate in the vicinity of the self-intersection. Periodic trajectories thus occur for

smooth potentials as well.

IV. QUANTUM POTENTIAL SCATTERING

In the quantum problem, the radius of the cyclotron orbit is quantized, The allowed

radii correspond to the Landau levels n = O, 1,2, ,.. . An electron haa a second quan-

tum number k, which (in the Landau gauge) adjusts its y guiding center coordinate.

An incident electron wavefunction Inl, & > can ncatter and emerge in state Ins, & >,

Since energy is ccmerved in the collision, for each outgoing Landau level index na,

only cme guiding center momentum ha is allowed, For example, suppose the Landau

level index is increaaed by 1 in the collision, increasing the particle’s kinetic energy

by ?&uC,Then ~ must change by an amount such that the g guiding center coordinate

moves downhill in the Hall ele~tric field ~, lowering the potential energy by exactly
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tuuc,
Quantum scattering is described by a scattering matrix that gives both the ampli-

tude and the phase to scatter into a given Landau level. An incident electron that

develops a substantial amplitude to scatter into a higher Landau level, for example

as ~ is increased, signals the breakdown of the quantum Hall effect. Because the y

guiding center changes, the collision induces a component of the current in the direc-

tion of the electric field, or a nonzero a==. A conductivity u== that increases rapidly

with E is an experimental sign of the breakdown of the QHE. 10 To see the relevance

of the phase # of the scattering matrix, consider a case where most of the scattering

amplitude is diagonal (the Landau level index does not change), The group velocity

v~ of a wavepacket is proportional to ~~/OE, where the energy E is proportional to ~

(and to they guiding center coordinate). Thus, a rapid change in &$/~E can signal

that the wavepacket is getting caught in a resonance, which is the quantum equivalent

of a long classical orbit.

The quantum scattering effects of interest cannot be calculated by perturbing in the

potential V(F) or in the Hall field l?, nor are they given by methods such aa the self-

consistent Born approximation. We have used two methods for quantum scattering.

The first is an exact transfer matrix method applied to a lattice that is fiaite in

the j direction and infinite in the ~ direction. The gecond is a quaaiclassical Wigner

density functional approximation. The quaaichmical method uses Wigner’e definition

to calculate the phase space density ~(~, ~, t = O) from the incoming wavefunction

WI, The density ~ is then numerically time evolved classically until essentially the

entire ensemble haa escaped from the scatterer. The resulting distribution j(~, ~, t) is

projected back onto an outgoing wavefunctlon *2, which define~ a scattering matrix.

The two methods of calculating quantum scattering are compared. In cases where

there is close agreement, one can conclude that the quantum dynamics is essentially
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following the classical dynamics. For more details about these methods and the results

obtained, see Refs. (11,9,12).

A, quantum wavepacket encountering a very slowly varying potential has behavior

quite similar to the classical case.3 -‘8 The Landau level index never changes. The

only important modification required in Fig. (2) is that now a wavefunction follows

guiding center trajectory. In the direction perpendicular to the local guiding center

trajectory, the wavefunction for the ground Landau level is a gaussian of extent equal

to a magnetic length 1 = ~-.

We now consider the relationship of quantum and claseical dynamics for an abrupt

potential. The (quantum) phase shift ~ for typical scattering from an abrupt potential

is shown in Fig. (1.0). The group velocity Vflis proportional to -8#/dE. The plot

shows that the potential generally speeds up the electron, except at a resonance in the

vicinity of energy E = 1.14. where the electron is slowed down significantly. Figure

(11) shows the number of collisions N for dassicul scattering with parameters that

have large weight in the corresponding Wigner density functional near the resonance.

It can be seen that long classical orbits occur. (We have demonstrated analytically

that infinitely long classical orbits occur, which appear finite in Fig.( 11) because of

finite numerical sampling, ) The long classical trajectories circle the scatterer many

times, aa shown in Fig, (12), In contrast, the very short trajectories, which are more

common, are deflected above the scatterer and immediately escape for the parameters

of Fig. (12), The short trajectories do not orbit, and thus have no classical probability

of being immediately below the scatterer,

This observation suggests that the relationship of quantum to classical scattering

can be further tested by calculating the probability that the electron is immediately

below the scatterer divided by the probability that it is immediately above the scat-

terer for the exact quantum eigenstate. Figure (13) shows that this probability is
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sharply peaked at the center of the quantum resonance at E = 1,14. Thus quantum

mechanically as well, a resonance occurs when the electron orbits the scatterer many

times before escaping. Also shown in Fig. (13) is that there is also an enhanced

probability of scattering into another Landau level at the center of the resonance.

Figure (14) shows the probability of scattering into the same (0) and higher (1)

Landau levels for an abrupt rectangular scattering potential. The quasiclassical cal-

culat ion gives a semiquantit ative approximation to the exact result. It does, howeverj

overestimate the amount of scattering out of the ground Landau level at low fields

J??. Suppose one takes as a criterion for the breakdown of the QHE that there is a

10% probability to scatter into a higher Landau level. The breakdown field & is

then found to vary strongly with the width of the scatterer in the ~ direction, For

a magnetic field of 4.7 T, the breakdown field is 225 V/cm for a scatterer that is

3.36 magnetic lengths wide and 80 V/cm for a scatterer 6.61 magnetic lengths wide.

These breakdown fields are almost two orders of magnitude smaller than the Zener

tunneling calculation for short range impurities. 13 The present estimates are also in

reasonable agreement wit h the measured value of 70 V/cm. 10

The calculation of phase shifts using the quasiclassical method is more difficult than

the calculation of scattering amplitudes, The calculation can be done, and in some

cases shows semiquant it ative agreement wit h t he exact phase shifts. 11*g~12

There are some parallels to the potential scattering investigated here and 4 terminal

junction behavior. Some recent papers on the theory of both classical and quantum

transmission of electrons through 4 terminal junctions are given in Refs. (14-16),

The first two of these references consider the behavior in magnetic fields,

V. SUMMARY

We have shown that classical potential scattering in a magnetic field is complex,
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and exhibits resonances in which an arbitrarily large number of collisions occur. This

applies not only to a hard wall potential that can be solved completely, but for generic

scattering potentials with finite gradients. Only infinitely slowly varying potentials

are in a class by themselves, with trivial scattering dynamics. Quantum scattering

follows the classical dynamics rather closely, and shows sharp quantum resonances.

We have also shown that extended scatterers can strongly enhance Zener tunneling,

and provide a quantitative zplanation for the breakdown of the quantum Hall effect.

Open questions include: (1) Finding a quantitative description for the change in

guiding center and the number of collisions for general potentials. (2) Determining

whether nonperiodic classical bound states exists for general potentials. (3) A more

detailed comparison to experiments, particularly those measuring noise and fluctua-

tion effects.

This work was supported by the US Department of Energy.
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FIG, 1. Potential scattering in zero magnetic field,

FIG. 2. ‘l’he guiding center trajectory is shown as a heavy line for scattering from a

smooth potential, for which two equipotential mrfaces are shown. A portion of the full

trajectory i~ shown on the left,

FIG. 3. Scattering from a hard tquare,

FIG, 4. Scattering from a horizontal wall.
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FIG. 5, The number of collisions N maximized over initial angle O aa a function of

T =cx+~, withs=a - ~ fixed at 0.2. N is plotted on a log scale.

FIG. 6. A periodic trajectory is shown as a heavy line. For slightly mistunec! parameters,

the trajectory does not quite clone (light line), and event uaily escapes.

FIG. 7. The set of parameters for which infinite trajectories exist, Plotted parameters

are of the form (r,s) = (jI/p, j2/p), with jl and ja integers and p = 2520.

FIG, 8. The trajectory starts nsar the tai! of the arrow. The short, heavy line segments

are arbitrary reflecting walls. To obtain a periodic trajectory, the final reflecting wall

(Gtriped) must be placed at the self- intersection point at the correct angle. A curve A that

supporte this periodic trajectory can be any curve that passes through the line segments

with a tangent parallel to the line segment.

FIG. 9. A trajectory that coilide~ with a hud wall is shown ●bove, ●nd with a smoothly

rising potential is shown below, The potentials are nonzero inside of the ohaded rectangles,

FIG. 10. Scattering phaae shift for a free oigenstate encountering ● rapidly varying

potential that is strongly repulsive incide a rectangle, The phaae diift is given when both

the incoming and outgoing states are in the first excited Landau level. The energy is

proportional to the y guiding center coordinate.

FIG, 11, Long claasical orbit- occur in parts of the region shown, with radius r plotted

between 1,308 and 1,312, and the incoming ph~.e d between 2.337 and 2,339,



FIG, 12. A portion of a long classical trajectory occurring in Fig, (11) is shown.

FIG, 13, The probability for finding the electron directly below the scatterer divided

by the probability for finding it above in the exact quantum eigefiotate (squareB), The

probability of scattering into the second Landau level is shown by circles, right scale.

FIG, 14. Scattering probability of a ground Landau level (0) wave packet as a function

of the Hall electric field, The colid lines are the results of the exact quantum calculation

and the dashed lines are the results of the quasiclassical approximation. The probabilities

for scattering into Landau levels higher than 1 are not shown,
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